Call:
lm(formula = Incidents ~ Average_Temperature + Average_Precip +
Average_AvgRelHum + Average_AvgWindSpeed, data = trainData)
Residuals:
Min 1Q Median 3Q Max
-16.906 -8.097 -2.853 7.179 25.787
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -19.4597 77.8368 -0.250 0.807190
Average_Temperature 2.7701 0.5727 4.837 0.000522 ***
Average_Precip 485.3668 191.5574 2.534 0.027785 *
Average_AvgRelHum -2.9807 1.2273 -2.429 0.033495 *
Average_AvgWindSpeed 8.2916 9.1085 0.910 0.382172
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 13.61 on 11 degrees of freedom
Multiple R-squared: 0.8308, Adjusted R-squared: 0.7692
F-statistic: 13.5 on 4 and 11 DF, p-value: 0.000318
RMSE Rsquared MAE
16.0536332 0.7154655 14.0474810
Characteristic |
Beta |
95% CI 1 |
p-value |
---|---|---|---|
Average_Temperature | 2.8 | 1.5, 4.0 | <0.001 |
Average_Precip | 485 | 64, 907 | 0.028 |
Average_AvgRelHum | -3.0 | -5.7, -0.28 | 0.033 |
Average_AvgWindSpeed | 8.3 | -12, 28 | 0.4 |
1
CI = Confidence Interval |